Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis.

نویسندگان

  • Bryn M Burkholder
  • Benjamin Osborne
  • Michael J Loguidice
  • Esther Bisker
  • Teresa C Frohman
  • Amy Conger
  • John N Ratchford
  • Christina Warner
  • Clyde E Markowitz
  • Dina A Jacobs
  • Steven L Galetta
  • Gary R Cutter
  • Maureen G Maguire
  • Peter A Calabresi
  • Laura J Balcer
  • Elliot M Frohman
چکیده

BACKGROUND Inner (area adjacent to the fovea) and outer regions of the macula differ with respect to relative thicknesses of the ganglion cell layer (neurons) vs retinal nerve fiber layer (RNFL; axons). OBJECTIVE To determine how inner vs outer macular volumes relate to peripapillary RNFL thickness and visual function in multiple sclerosis (MS) and to examine how these patterns differ among eyes with vs without a history of acute optic neuritis (ON). DESIGN Study using cross-sectional optical coherence tomography. SETTING Three academic tertiary care MS centers. PARTICIPANTS Patients with MS, diagnosed by standard criteria, and disease-free control participants. MAIN OUTCOME MEASURES Optical coherence tomography was used to measure macular volumes and RNFL thickness. Visual function was assessed using low-contrast letter acuity and high-contrast visual acuity (Early Treatment Diabetic Retinopathy Study charts). RESULTS Among eyes of patients with MS (n = 1058 eyes of 530 patients), reduced macular volumes were associated with peripapillary RNFL thinning; 10-microm differences in RNFL thickness (9.6% of thickness in control participants without disease) corresponded to 0.20-mm(3) reductions in total macular volume (2.9% of volume in control participants without disease, P < .001). This relation was similar for eyes of MS patients with and without a history of ON. Although peripapillary RNFL thinning was more strongly associated with decrements in outer compared with inner macular volumes, correlations with inner macular volume were significant (r = 0.58, P < .001) and of slightly greater magnitude for eyes of MS patients with a history of ON vs eyes of MS patients without a history of ON (r = 0.61 vs r = 0.50). Lower (worse) visual function scores were associated with reduced total, inner, and outer macular volumes. However, accounting for peripapillary RNFL thickness, the relation between vision and inner macular volume remained significant and unchanged in magnitude, suggesting that this region contains retinal structures separate from RNFL axons that are important to vision. CONCLUSIONS Analogous to studies of gray matter in MS, these data provide evidence that reductions of volume in the macula (approximately 34% neuronal cells by average thickness) accompany RNFL axonal loss. Peripapillary RNFL thinning and inner macular volume loss are less strongly linked in eyes of MS patients without a history of ON than in eyes of MS patients with a history of ON, suggesting alternative mechanisms for neuronal cell loss. Longitudinal studies with segmentation of retinal layers will further explore the relation and timing of ganglion cell degeneration and RNFL thinning in MS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Applications of Optical Coherence Tomography in Ophthalmology

Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases.  Furtherm...

متن کامل

Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica

BACKGROUND The optic nerve is frequently injured in multiple sclerosis and neuromyelitis optica, resulting in visual dysfunction, which may be reflected by measures distant from the site of injury. OBJECTIVE To determine how retinal nerve fiber layer as a measure of axonal health, and macular volume as a measure of neuronal health are related to changes in myelin water fraction in the optic r...

متن کامل

Optical Coherence Tomography and Corpus Callosum Index in Cognitive Assessment of Multiple Sclerosis Patients

Background: Multiple Sclerosis (MS) is a neurodegenerative disease of central nervous system. Different approaches have been developed to study MS progression and cognitive dysfunction as the major symptom of the disease. The current study compared Optical Coherence Tomography (OCT) and Corpus Callosum Index (CCI) for the early evaluation of cognitive dysfunction in MS patients.  Objectives: T...

متن کامل

Optical coherence tomography and its use in optical neuritis and multiple sclerosis.

Optical coherence tomography is a relatively new non-invasive imaging technique used for obtaining the images and quantifying the layers of the retina. It also provides information about optic nerve head topography, peripapillary retinal nerve fiber layer thickness, and macular volume which correlates with axonal loss. Until now, this method was used mainly in ophthalmology; now it has emerged ...

متن کامل

An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography.

Axonal loss is thought to be the predominant cause of disability in progressive multiple sclerosis (MS). The retinal nerve fibre layer (RNFL) is composed largely of unmyelinated axons of retinal ganglion cells, and is accessible to study with optical coherence tomography (OCT), giving a measure of axonal loss. OCT measures of the RNFL thickness (RNFLT) and macular volume were studied in 23 pati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of neurology

دوره 66 11  شماره 

صفحات  -

تاریخ انتشار 2009